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SPANNED STOCHASTIC VOLATILITY IN BOND MARKETS:

A REEXAMINATION OF THE RELATIVE PRICING BETWEEN BONDS AND BOND OPTIONS

DON H. KIM∗

Abstract. This paper reexamines the issue of unspanned stochastic volatility (USV)
in bond markets and the puzzle of poor relative pricing between bonds and bond
options. I make a distinction between the “weak USV” and the “strong USV” scenarios,
and analyze the evidence for each of them. I argue that the poor bonds/options relative
pricing in the extant literature is not necessarily evidence for the strong USV scenario,
and show that a maximally flexible 2-factor quadratic-Gaussian model (a non-USV
model) estimated without bond options data can capture much of the movement in
bond option prices. Dropping the positive-definiteness requirement for nominal interest
rates and adopting “regularized” estimations turn out to be important for obtaining
sensible results.

1. introduction

An outstanding problem in modeling the term structure of interest rates is to char-
acterize the variation in the volatility of interest rates and its possible relation to the
factors that affect yield curve movements. Some early models, including the well-known
Cox-Ingersoll-Ross (CIR) model, assumed that the volatility of interest rates is posi-
tively related to the level of interest rates. While the episode of 1979-83 (during which
both the level and volatility of interest rates were high) seemed to provide some support
for this, more recent studies, such as Duffee (2002), indicated that the relation between
the interest rate uncertainty and the factors underlying the term structure movements
is more complicated. Perhaps the most striking result in this regard is that of Collin-
Dufresne and Goldstein (2002, henceforth CDG), who found that the changes in bond
option prices1 are poorly explained by the changes in bond yields and argued that this
implies the presence of a stochastic volatility in interest rates that does not affect the
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1In this paper, I shall use the term “bond options” to refer to a broad range of interest rate derivatives
that have option characteristics, including Treasury futures options, eurodollar futures options, interest
rate swaptions, and interest rate caps.
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2 D. H. KIM

cross-section of the yield curve. CDG dubbed the effect “unspanned stochastic volatil-
ity” (USV) and constructed models that have such a feature.

The USV effect however remains controversial. For example, Fan, Gupta, and Ritchken
(2003) have argued against USV, based on their finding that Heath-Jarrow-Morton(HJM)-
type models of the yield curve seem to hedge risks in bond options well. Bikbov and
Chernov (2005) have also reported that their test of CDG (2002)’s specific restriction
that guarantees USV is rejected in a 3-factor affine model. Recently Joslin (2007) has
argued against USV by showing that the general 4-factor (non-USV) affine models fit
bond option prices better than the USV counterparts. However, some other recent pa-
pers conclude in support of USV. In particular, Li and Zhao (2006, henceforth LZ) find
that a fairly rich non-USV model (3-factor quadratic-Gaussian model) still cannot match
the observed market cap prices well, while Collin-Dufresne, Goldstein, and Jones (2004,
henceforth CDGJ) report that their 4-factor USV model fits data better than 3-factor
non-USV models. Furthermore, Andersen and Benzoni (2006, henceforth AB) show
that their measure of intraday volatility of yields is poorly explained by term structure
factors, contrary to the implication of the non-USV models.

The evidence in support of USV notwithstanding, the USV models and the USV
phenomenon itself present a puzzle. Consider, for specificity, CDG (2002)’s original
affine model displaying USV. This model has restrictions imposed on the general affine
model such that the volatility of interest rates does not enter the expression for bond
yields. But we should expect bond yields to depend on volatility on theoretical and
intuitive grounds. One concrete channel this would happen is the so-called Jenssen’s
inequality effect (also called “convexity bias”), arising from the fact that bond price is
an expectation of a convex function of the short rate; see, e.g., Burghardt and Hoskins
(1995). The convexity bias increases with the amount of interest rate uncertainty, and is
quantitatively small for yield maturities up to ten years (typically about 10 basis points
for the 10-year yield), though it is important at very long maturities. Even if one were to
restrict attention to the below-10-year maturities, the convexity bias is a reminder that
volatility can affect the term structure, as a matter of principle.2 Another channel that
is perhaps more important quantitatively is the “term premium effect”: intuitively we
should expect risk premium (term premium) on bonds to depend not only on the price
of uncertainty (market price of risk) but also on the amount of uncertainty. Because this
term premium effect would have certain maturity dependence, we would expect the yield
curve itself to have a dependence on the amount of uncertainty.3 Thus the independence
between volatility and the yield curve suggested by the USV models seems strange.

The purpose of this paper is to reexamine the existing evidence on the USV effects
and to present some new evidence that may help clarify the USV puzzle as well as the
related puzzle of poor relative pricing between bonds and bond options. To this end I

2This point is emphasized by Joslin (2007).
3In order to have a situation like the A1(3) USV model of CDG (2002), the volatility dependence of

the term premium component of the yield curve (including convexity bias) has to cancel mysteriously
with that of the expectations component.
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make a distinction between the “weak USV” and the “strong USV” scenarios. I refer
to CDG (2002)’s original USV definition (namely that there is some component of bond
option prices or instantaneous yield volatilities that is not spanned by the yield curve
factors) as the weak USV condition, since this condition by itself might not have strong
implications for modeling fundamental risks in the economy. For example, the weak
USV scenario could arise from relatively high-frequency effects associated with certain
institutional features of bond and option markets. Thus it is also useful to consider
a stronger condition, “strong USV”: there exists a lower-frequency (macroeconomic)
variation in interest rate uncertainty that is unrelated to the yield curve, as in the A1(3)
and A1(4) USV models of CDG (2002) and CDGJ (2004). The evidence for USV in the
literature, such as CDG (2002)’s and AB (2006)’s regressions, supports the weak USV
scenario but not necessarily the strong USV scenario.

One could argue that there is evidence for the strong USV scenario, namely the
poor relative pricing between bonds and bond options in the existing literature: studies
including Jagannathan, Kaplin, and Sun (2003, henceforth JKS) and LZ (2006) have
found that term structure models estimated only with yields data have difficulty in
capturing not just the high-frequency but also the lower-frequency variations in observed
bond option prices. However, I shall argue that these studies may have had problems
with specification and estimation (e.g., normalization issues, potential problems with
conventional estimation techniques, daily sampling of term structure data with short
time span). Addressing these issues (using a normalization that forgoes the positive-
definiteness of interest rates and employing “regularized” estimations), I obtain quite
good relative pricing results using a quadratic-Gaussian model (non-USV model) with
just two factors. This is a welcome finding by itself, but it also casts doubt on the strong
USV scenario.

The plan of the remainder of the paper is as follows. After setting up some notations
and briefly reviewing term structure models, Section 2 defines the “weak USV” and
the “strong USV” scenarios and discusses the evidence for them. Section 3 discusses
potential problems with several commonly made assumptions in the specification and
estimation of term structure models, taking a close look at some relevant aspects of the
term structure data. With these caveats in mind, Section 4 reexamines the relative pric-
ing between bonds and bond options in the context of the 2-factor quadratic-Gaussian
model, and Section 5 concludes.

2. USV: models and evidence

2.1. Review of Model Specifications. Many of the “time-consistent” models dis-
cussed in connection with the USV debate belong to the affine class of models.4 Because

4The “time-consistent” designation here is meant to emphasize the distinction from “time-
inconsistent” models (e.g., the HJM-type models used by Fan et al (2003)) which are re-calibrated
every time they are used, taking the yield curve as an input. The time-inconsistent models are not
considered in this paper, because they do not have much to say about term premia (being restricted to
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affine models have been discussed extensively elsewhere in the literature, I discuss here
only some examples that will be useful later in the paper. The feature that gives the
affine models its name is that yields depend linearly on a vector of state variables (risk
factors) xt = [x1t, ..., xnt]

′. That is, yt,τ , the zero coupon yield at time t with time-to-
maturity τ , takes the form

(1) yt,τ = aτ + b′τxt,

where bτ is an n-dimensional vector of factor loadings. Dai and Singleton (2000) classify
affine models according to the number of “volatility factors”, the Am(n) model denoting
an n-factor model with m stochastic volatility factors.5

Two cases of affine models, the A0(n) model and the An(n) model, are particularly
familiar: the A0(n) model, often called the “affine-Gaussian model” or “multi-factor
Vasicek model,” has Gaussian risk factors, i.e., the state vector xt follows the multivariate
Ornstein-Uhlenbeck process,

(2) dxt = K(µ − xt)dt + ΣdBt,

where K and Σ are n × n constant matrices, µ is a constant n-vector, and Bt is an
n-vector of standard Brownian motion. A version of the An(n) model, called the multi-
factor CIR model, has been also studied for long in the literature. In this model, all of
the risk factors follow the (independent) square-root process, i.e.,

(3) dxit = κi(µi − xit)dt + σi

√
xitdBit

for i = 1, ..., n.
The instantaneous volatility of yields vt,τ (=

√

(dyt,τ)2/dt) is straightforward to cal-
culate. We have (from eqs. (1) and (2))

(4) v2
t,τ = b′τΣΣ′bτ

for the affine-Gaussian model, and

(5) v2
t,τ =

n
∑

i=1

b2
τ,iσ

2
i xit

for the multi-factor CIR model. The volatilities in the affine-Gaussian model are time-
invariant, while in the CIR model the instantaneous yield variance v2

t,τ depends linearly
on the state variables. It is also straightforward to show that conditional variance
of yield, vart(yt+u,τ ), takes the same form (i.e., time-invariant for the affine-Gaussian
model, and linear in xt for the multi-factor CIR model).

risk-neutral modeling) and because it is not clear how to make a connection between these models and
the macroeconomy.

5Duffee (2002) enriched the market price of risk specification of Dai and Singleton (2000), calling the
resulting models “essentially affine” models, and Cheridito et al (2007) have made further enrichments.
To simplify discussion, in this paper I shall not make a distinction between the affine and the essentially
affine models, denoting both cases Am(n).
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Neither the affine-Gaussian model nor the multi-factor CIR model has the USV fea-
ture: the affine-Gaussian model does not have any stochastic volatility (either spanned
or unspanned) at all, while in the multi-factor CIR model the factors that affect the
variation of vt,τ also appear in the expression for yields. CDG (2002) show that in the
case of certain Ai(>0)(n) models, we could have a situation in which v2

t,τ depends on a
factor that does not affect the cross section of yields, for example,

(6) v2
t,τ = ατ + βτx1t, yt,τ = aτ + bτ,2x2t + bτ,3x3t.

This particular example can be viewed as a special case of the general A1(3) model;
CDG (2002) provide a set of restrictions on the parameters of the general model that
lead to such a feature (USV).

For the later discussion, it is useful to describe also the so-called quadratic-Gaussian
(QG) models. In the QG model, the short rate rt depends quadratically on the state
vector xt that follows the multivariate O-U process, eq. (2), and the market price of risk
λt depends linearly on xt, i.e.,6

rt = φ + ρ′xt + x′

tΨxt(7)

λt = λa + Λbxt,

where φ is a constant, ρ and λa are n-dimensional constant vectors, and Ψ and Λb are
n×n constant matrices. (Ψ is a symmetric matrix.) With this specification, bond yields
of general maturity also take the quadratic form

(8) yt,τ = aτ + b′τxt + x′

tCτxt,

where the factor loadings aτ , bτ , Cτ can be expressed as a solution of a set of ordinary
differential equations, called the Riccati equation; see, for example, Ahn, Dittmar and
Gallant (2002, p255) and Leippold and Wu (2002, eq. (8)).

It is straightforward to show (using the Ito’s lemma and eqs. (2) and (8)) that
instantaneous yield volatility vt,τ in the QG model is given by

(9) v2
t,τ = (b′τ + 2x′

tCτ )ΣΣ′(bτ + 2Cτxt).

Note that this is an even richer form for describing the volatility variation than that
of the multi-factor CIR model, not only because the functional form (9) is richer than
(5) but also because the risk factors (x1t, x2t, ...) in the QG model can have a general
correlation. But again, it is in general inconsistent with USV, as a factor that moves
vt,τ would also appear in the expression for bond yields.

6These define the (continuous-time) pricing kernel Mt as dMt = −Mtrtdt − Mtλ
′

tdBt, where Bt is
the shocks (Brownian motions) that drive state variables (as in eq. (2)). The price of a zero-coupon
bond with time-to-maturity τ is given by Pt,τ = Et(Mt+τ )/Mt.
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2.2. Weak USV and Strong USV. To interpret the evidence on USV, it is useful to
make a distinction between the “weak USV” and the “strong USV” scenarios.

By weak USV, I refer to the case in which there is some component of bond option
price variation or instantaneous yield volatility variation that is not spanned by the
yield curve factors; this corresponds to the original USV condition of CDG (2002). I
label this condition “weak”, in the sense that it might not imply a strong or useful
constraint on term structure models insofar as the modeling of fundamental risks are
concerned. For example, certain institutional aspects of bond markets or option markets
(market organization, trading rules, etc.) may give rise to a relatively short-lived (“high-
frequency”) USV effect, which, although possibly important to some traders, might not
be central to the discussion of basic risk and return in bond markets.

Therefore, I also consider a stronger case of USV (“strong USV”), in which there is a
“fundamental” variation in bond option prices or in yield volatility that is not spanned
by the yield curve factors. Here I have in mind the kind of variation at a time scale
of a few quarters or longer (lower-frequency variation) that would be important for
discussions about the macroeconomy and asset pricing.7 Note that the specific A1(n)
USV models of CDG (2002) and CDGJ (2004) have not only the weak USV feature but
also the strong USV feature. In fact, they imply a very strong form of USV, since they
do not have a “spanned” component of volatility at all.

To illustrate some contexts in which the strong USV debate matters, let us now discuss
the issue of interpreting the variation of the bond market term premia. As is well known,
long-term yields in the US were substantially higher in the 1980s than in 2000s. This
may be partly due to the long-term yields in the earlier period containing higher term
premia, which, in turn, may have been due in part to the larger amount of risk (higher
uncertainty about macroeconomy and monetary policy), which came down over time
since then (a phenomenon often referred to as the “Great Moderation”). Such a trend-
like variation in the interest rate uncertainty may be difficult to detect from one-month
or one-week changes in option-implied volatilities.

Besides the “trend” variation, “intermediate-frequency” variation in interest rate un-
certainty (related to business cycles and other macro effects) may have also contributed
to term premium variations. Figure 1 shows the width of a 90% confidence interval for
the distribution of the 1-year-ahead short rate based on the eurodollar futures options.8

While it shows many short-term fluctuations, broader variations (over yearly or longer
time scales) are also visible. In recent years, the “unusually low” level of long-term

7“Strong USV” is not a precise concept but a heuristic one, as concepts like “fundamental” and
“lower-frequency” are not easy to define. For concreteness, however, think of the bond option price or
the instantaneous volatility as a function f(xs

1t, x
s
2t, ..., x

u
1t, x

u
2t, ...), where xs

it’s are “spanned” factors
(yield curve factors) and xu

it’s are “unspanned” factors. If any of xu
it’s have a characteristic time scale

(or half-life) that exceeds some number (say, a few quarters) and have a non-negligible weight, we could
call that “strong USV.”

8Note that this uncertainty information is about the risk-neutral measure (since it’s from options),
but we can expect qualitatively similar behaviors in the physical measure.
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Figure 1: Width of a 90% confidence interval for the distribution of the short rate 1-year ahead, based
on the eurodollar futures option prices (Source: internal data, Division of Monetary Affairs, Federal
Reserve Board). The 3-month LIBOR rate (a short-term interest rate) is also shown for comparison.

yields since Federal Reserve’s policy tightening of June 2004 received much attention.
One proposed partial explanation is that a reduction in the uncertainty about interest
rates lowered the term premium in yields. (See, for example, Backus and Wright (2007).)
Indeed, the interest rate uncertainty has been generally low in the past few years, as can
be seen in Figure 1.

Kim and Orphanides (2007) present some evidence for a positive relation between term
premium and the uncertainty about monetary policy at intermediate- and low- frequen-
cies. However, their measure of monetary policy uncertainty is based on the dispersion
of survey forecasts, which, some might argue, is not a water-tight proxy for uncertainty.
In addition, their term premium modeling is based on the affine-Gaussian model, which
has a limitation that interest rate uncertainty does not vary over time. To examine the
potential relation between term premium and interest rate uncertainty in an internally
consistent manner, we need a no-arbitrage model that can jointly describe the relevant
volatility variations and term premium variations. In particular, the model should be
able to capture the kind of lower- and intermediate-frequency volatility variations we
have just discussed, even if it misses the details of higher-frequency variations.

In writing down such a “candidate” model, we are faced with the following questions:
Are the models that do not have the USV feature (e.g., the QG models) suitable for
that purpose? Should we require that the model have the strong USV feature (as in the
affine USV models of CDG (2002) and CDGJ (2004))? A potential concern with models
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that have the strong USV feature is that they might rule out a meaningful relation
between term premia and volatility by design, as these models “decouple” the volatility
dynamics and term structure dynamics to some extent. Therefore, answers to some very
basic questions about risk and return in bond markets hinge on whether the strong USV
condition holds or not.

2.3. Evidence for Weak USV. CDG (2002)’s principal evidence for USV comes from
the regression of the change in the price of straddle portfolios onto the change in swap
rates. Their “straddle” is a combination of (at-the-money) cap and floor, and has the
feature that its price is not very sensitive to changes in the level of interest rates (i.e.,
delta-neutral) but sensitive to changes in volatility. Denoting the monthly straddle
returns ∆st,T , their regression can be written

(10) ∆st,T = c0 + c1∆yt,τ1 + c2∆yt,τ2 + ... + cl∆yt,τl
+ ǫt,T .

In the regression of staddle returns on the change in yields of various maturities (τi=0.5,
1,2,3,4,5,7,10 years), they found that the regression R2’s tend to be not very high, e.g.,
ranging between 20% and 50% (for different straddle maturity T ) in the case of the US.
This kind of R2 is substantially lower than when the change in a bond yield is regressed
onto the change in other yields, in which case R2’s exceeding 99% are common. CDG
(2002) further note that the regression residuals for various T ’s (ǫt,T ) have a common
dominant component. They thus conclude that the options markets (cap and floor
markets) have a systematic risk factor that is not spanned by the bond markets.

Andersen and Benzoni (2006) provide further evidence that is similar in spirit. AB’s
basic idea is as follows. Note that the instantaneous yield variance v2

t,τ in the affine
model depends linearly on the state variables, e.g., eq. (3) for the multi-factor CIR
model. Because yields also depend linearly on state variables, one can “invert” the state
vector from a set of yields, and express v2

t,τ as

(11) v2
t,τ = cτ,0 + cτ,1yt,τ1 + ... + cτ,nyt,τn

.

This is a linear regression without the residual term, in other words, a regression with
very high R2. If the yield dynamics is a diffusion and if one could sample yields at
infinitesimally small time intervals, one could actually measure v2

t,τ . This is not feasible
in practice, but one could integrate eq. (11) and obtain a testable relation,

(12) v2
t,τ,h = cτ,0 + cτ,1yt,τ1,h + ... + cτ,nyt,τn,h,

where v2
t,τ,h ≡ 1

h

∫ h

0
v2

t+s,τds and yt,τ,h ≡ 1
h

∫ h

0
yt+s,τds. A suitable proxy for v2

t,τ,h (and
yt,τ,h) can be obtained from discretely measured intraday data on yt,τ ’s. AB find that
running the regression (12) generates a very low R2s, an indication of the failure of the
spanning condition.

The results in CDG (2002) and AB (2006) suggest that there is some component in
bond option prices or in the instantaneous yield volatility that is unrelated to the yield
curve. These regressions thus support weak USV scenarios. However, by their nature
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they do not have much to say about strong USV, as they address mainly the relatively
high-frequency aspects of the volatility dynamics: CDG (2002)’s is based on the monthly
change in asset prices,9 and AB (2006)’s results are also driven by high-frequency features
of the volatility dynamics (scheduled macroeconomic data releases) as I shall discuss in
detail in Sec. 3.1.

2.4. Evidence for Strong USV. A long-standing difficulty in term structure modeling
is the failure of relative pricing between bonds and bond options: time-consistent no-
arbitrage term structure models estimated only with yields data tend to imply bond
option prices that do not agree well with market prices. For example, JKS (2003) find
that the multi-factor CIR models (up to 3 factors) generate model-implied option prices
that have large pricing errors and do not show much similarity to market option prices
in their time-variation even if one looks beyond the high-frequency aspects (see, e.g.,
their Figure 4). LZ(2006) also report similar difficulties for a richer model (3-factor QG
model).10

The USV proposal of CDG (2002) leads to a surprising answer to the puzzle of the
poor relative pricing: relative pricing fails because it is meant to fail; the bond market is
incomplete, and hence term structure information is not sufficient to price bond options.
Though striking, by itself it does not completely solve the puzzle. Indeed, we are im-
mediately led to the following questions. How incomplete is the bond market? Even if
we grant the existence of a high-frequency unspanned component in volatility, shouldn’t
there still be a spanned component of volatility that is linked to slower, macroeconomic
variations in bond option prices? How much of the failure to capture the non-high-
frequency movements in bond option prices (as in JKS (2003)) is due to USV, rather
than due to other problems?

While strong USV is a potential explanation for the poor relative pricing, it is possible
that we have not explored comprehensively enough the alternative explanation: the
existing literature may have had specification problems (unrelated to USV). Indeed,
the multi-factor CIR model used by JKS (2003) has some well-known deficiencies: for
example, the factors in the CIR models are constrained to be independent, and the
relation between term premium and volatility in the model may be too tight (see, e.g.,
Duffee (2002)). While the QG model used by LZ (2006) does not have these problems,
it may have a subtler problem (with normalization) which is also shared by JKS (2003),
as I shall argue in Sec. 3.3.

9Note that one cannot simply “un-difference” the CDG (2002)’s regression (i.e., regression in levels
instead of in differences) to investigate the strong USV question: because yields and option prices are
fairly persistent variables, one could get a high R2 simply due to the spurious regression effect.

10After the first draft of the present paper had been finished, Joslin pointed out to me a paper of
Almeida, Graveline, and Joslin (2006), which reports an encouraging result in pricing bond options
with a (non-USV) A1(3) model estimated without options data. However, CDGJ (2004) obtain results
that are at odds with this: they find that their estimated non-USV A1(3) model produces a yield
volatility that is negatively correlated with a GARCH-type volatility (which implies a poor relative
pricing performance of the non-USV A1(3) model).
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Furthermore, there might be econometric issues with the existing studies. As I shall
argue in Sec. 3.4, the conditions for commonly used techniques like the maximum
likelihood (ML) estimation to be valid are often not satisfied in a term structure model
estimation setting. In addition, in the case of LZ (2006) it is difficult to see whether
the model produces reasonable business-cycle and low-frequency variations in volatility
because of the short time span of their data (just exceeding two years). LZ’s estimation
may also have a subtler problem: their estimation is based on daily sampled data, but in
this case the complexity of high-frequency volatility dynamics (in some sense highlighted
by AB (2006)’s results) may lead to substantial distortions in inference.

3. close look at data and assumptions

Let us now discuss in detail several aspects of data that may have important rami-
fications for the USV debate and the failure of the bonds/options relative pricing, and
take a critical look at some of the commonly made assumptions in the specification and
estimation of term structure models.

3.1. Inhomogeneity of Volatility Dynamics. An empirical feature that has not been
discussed much in the no-arbitrage term structure modeling literature but is well known
to market practitioners is that macroeconomic economic data releases (such as the an-
nouncement of the nonfarm payroll growth and core-CPI) play a substantially greater
role in bond price movements than in stock price movements. It is well known from Roll
(1988) and Cutler et al (1989) that stock price movements are hard to explain even ex
post; the regression of stock price changes onto identifiable news or events typically gives
a low R2. By contrast, a much higher fraction of bond price movements are explain-
able with macroeconomic data releases and other identifiable events (such as the release
of FOMC statements and minutes and the speeches of Fed officials); see, for example,
Fleming and Remolona (1997).

The reaction of bond prices to macroeconomic data releases is (practically) immediate
and often quite sizeable. Thus, often on days of important data releases, the intraday
time series of bond yields displays a jump-diffusion-like behavior. The intraday time
series of the 10-year on-the-run Treasury yield on Apr 2, 2004, shown in Figure 2a, is a
fairly clean example: on this day at 8:30am there was a payroll announcement, and a
sharp move to a new level is clearly visible. However, even the jump-diffusion character-
ization is only approximate: one can see a more complex reaction to the announcement
on some other days. For instance, Figure 2b shows the behavior of the 10-year yield on
Jun 4, 2004. On this day there was also a payroll announcement at 8:30am. The 10-year
yield rose immediately upon the news but quickly came back down and then fluctuated
upward afterwards.

It may thus be more accurate to characterize the interest rate behavior on announce-
ment days as “high-volatility days” (rather than “jump days”). In fact, the volatility on
these days tends to be so high compared to non-announcement days that an allowance
for this fact may have to be made to describe the daily volatility dynamics accurately.
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Figure 2: Intraday (5-min-interval) time series of ten-year on-the-run Treasury yield from 6 o’clock to
15 o’clock (Source: internal data, Division of Monetary Affairs, Federal Reserve Board).

For example, Jones et al (1998) model the daily Treasury bond return volatility via a
GARCH model in which the volatility on macroeconomic data announcement days are
larger than non-announcement days by a factor

√
1 + δ0.

11 In light of the strongly in-
homogeneous behavior of daily volatilities, it is not surprising that AB (2006) find very
low R2’s in their regression, supporting the existence of USV.

While the effect documented in AB (2006) constitutes one channel of USV, it is not
a fundamental one (from a macroeconomic point of view) but a largely “institutional”
one. The dates of important macroeconomic data releases are known in advance, and
traders already anticipate high volatility on these dates. Therefore, even if the volatility
on an announcement day is ten times larger than the volatility on the previous day,
this does not mean that the fundamental risk has increased ten times. To clarify this
point further, consider a thought experiment in which the Bureau of Labor Statistics
changed the date of the upcoming nonfarm payroll announcement (e.g., push back by a
day). There would likely be a high volatility on the new date and not on the old date,
but this change in the pattern of volatility clearly does not have any macroeconomic
significance.12 Technically speaking, the “unspanned stochastic volatility” effect in AB
(2006) is in fact not fully stochastic, since much of the rise in volatility on announcement
days is an anticipated one.

Perhaps the clearest and also the most striking indication that markets largely antic-
ipate high volatility on important macroeconomic announcement days can be found in
very-short maturity options on bonds. In the US, the monthly release of the nonfarm

11However, their treatment ignores the fact that some macro announcements (like the nonfarm payroll
growth) are a lot more influential than some others.

12Note, however, that the amplitude of the bond market reaction to the news (expected volatility on
the announcement day) can depend on the state of economy.
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Figure 3: Implied volatility from the one-week option on the five-year Treasury note. Dotted lines show
the dates of nonfarm payroll announcement. (Source: Goldman Sachs; Moessner and Nelson (2007))

payroll growth is particularly influential among various data releases; in fact, most of
the days of the highest realized volatility in recent years have been the nonfarm payroll
announcement days. Thus traders have come to expect a particularly high volatility on
these dates. This effect is strong enough that if a one-week bond option expires after the
nonfarm payroll announcement day, it has a notably elevated price. Figure 3 shows the
daily time series of the implied volatility from a 1-week option on the five-year Treasury
note, from which a nonfarm payroll announcement-induced seasonality can be clearly
seen. Obviously, these “seasonal” features cannot be captured with time-homogeneous
no-arbitrage models like affine and QG models.

3.2. Time Scales and Time Series. The complexity of high-frequency volatility dy-
namics discussed above can create difficulties even if one wishes to focus on the more
fundamental variation in interest rate uncertainty. For instance, in LZ (2006)’s USV
study with the QG model, their use of daily data may lead to distortions when the es-
timation tries to fit the “unfittable”: the largely anticipated rise in volatility on certain
days would be treated as a purely random (unanticipated) rise in volatility.

One response to this problem is to build a more elaborate model that accommodates
anticipated jumps and inhomogeneities (by identifying all dates of important macroe-
conomic data releases). However, that would be too ambitious an undertaking for the
present paper, especially in view of the fact that still too little is agreed about the proper
modeling of volatility in the term structure modeling context.
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Another response – something of a “poor man’s solution” – is to sample less frequently
(weekly or monthly, instead of daily). The idea is this: if term structure data were
sampled less frequently, the data would appear more homogeneous, and the dynamics
would look more like a diffusion. A visual comparison of 10 years’ monthly data and 6
months’ daily data would immediately illustrate this point (jumps and inhomogeneities
are harder to see in the former), but one can also see this from the comparison of the
kurtosis of 1-day, 1-week, and 1-month changes (∆d, ∆w, ∆m) in interest rates. For
example, computing the kurtosis k for the 2-year swap rate from 1995 to 2007 gives

(13) k(∆d) = 5.98, k(∆w) = 4.90, k(∆m) = 4.19.

Note that the kurtosis of the daily change is the largest of the three, as jump-like
effects make the distribution more heavy-tailed (recall that the normal distribution has
a kurtosis of 3), and this heavy-tail effect declines with increasing time scale. Thus,
we could think of time-homogeneous diffusion models as an approximate, “effective”
description of the weekly- or monthly-frequency data, even though the “true” process is
a far more complicated one.

From the classical econometric point of view (asymptotic theory), it may appear
unwise to sample intentionally less frequently, when the availability of data and compu-
tational resources is not an issue. However, the point is that any model is necessarily an
imperfect approximation, and a model that is designed to best capture the behavior at
certain time scale (e.g., high-frequency features) might not necessarily be the best model
for addressing questions about an effect that occurs at another characteristic time scale.

While the idea of there being no such thing as “one model fits all” may appear
pessimistic to time-series econometricians, physicists are comfortable with this idea and
accept that different kinds of physical laws (or “effective models”) are needed to describe
systems at different time scales, length scales, or energy scales.13 To give a simple
example, in order to describe the behavior of a steel ball thrown into the air, we should
use the laws of classical mechanics (Newtonian mechanics); quantum mechanics (a more
advanced and modern theory) would be unnecessary and distracting here.14 Another
example, which I believe is due to Benoit Mandelbrot, is the fact that a piece of paper
appears zero-dimensional (a point) if seen from a distance; sufficiently close, it would
look two-dimensional (a plane); and even closer on a microscope, it would look one-
dimensional (fibers).

In sum, although time-homogeneous diffusion models may “break down” at very high
frequencies, it is at least an open question whether such models would be so bad an ap-
proximation of the weekly or monthly data.15 Lastly, note that, while sampling at lower

13Philip Anderson (1972)’s influential essay, a critique of the so-called reductionist philosophy of
science, gives a deeper discussion of this issue.

14Quantum mechanics would be needed to describe the iron atoms inside the ball, but for this example
we can treat the ball as a point mass rather than a system of many atoms.

15Admittedly the problem under consideration here (dynamic term structure estimation) is much
more complicated than the steel ball example or the piece-of-paper example: the qualitative distinction
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frequencies is likely to improve the prospects for time-homogeneous diffusion models,
it does involve information loss for some aspects of the data. In particular, it is well
known that although the “drift” part of a diffusion model is not much better estimated
by a more frequent sampling, the “diffusion” part is better estimated with a more fre-
quent sampling (e.g., Merton (1980)). Later in the paper we shall discuss some ways of
addressing this problem.

3.3. Term Structure Behavior in the Past Few Decades. In this paper, I focus
mainly on the US term structure behavior in the 1990s and 2000s, as this is the period
that is most representative of the current interest rate environment, and as most other
studies of relative pricing between bonds and bond options have focused on this period
(due to the ready availability of the options data).

As mentioned in the Introduction, in the earlier periods (especially in the late 70s and
early 80s), there seemed to be a positive relation between the level of interest rates and
the amount of interest rate uncertainty, thus a model like the CIR model,

(14) drt = κ(µ − rt)dt + σ
√

rtdBt,

whose short rate volatility is proportional to
√

r, seemed sensible. However, the relation
between the level of interest rates and interest rate uncertainty is much less clear-cut in
the more recent period (1990s and 2000s). For instance, there is little in Figure 1 (shown
earlier in Sec. 2.2) that jumps out to the eye to indicate a positive relation between the
short rate and the uncertainty. This might be consistent with the USV models like CDG
(2002), which have a volatility variable that is independent of bond yields.

However, there is another possibility, namely that the relation between volatility (in-
terest rate uncertainty) and the term structure has become more complex; in other
words, there is still possibility for multi-factor term structure models without the USV
feature to be consistent with the observed behavior of volatility and term structure.
Models like JKS (2003) and LZ (2006) may look especially promising, in view of their
potentially rich volatility dynamics (having more than one factor to describe volatility
variation). However, these studies make a normalization choice that is problematic for
the past few decades’ data.

I now illustrate this point with the multi-factor CIR model used by JKS (2003). Their
3-factor model is specified as

rt = φ + x1t + x2t + x3t,(15)

dxit = κi(µi − xit)dt + σi

√
xitdBt.

By a re-scaling of the xit’s, one can show that the specification (15) can be written in
the form

rt = φ + ρ1 x1t + ρ2 x2t + ρ3 x3t,(16)

dxit = κi(µi − xit)dt +
√

xitdBt.

between daily and monthly behaviors of the yield curve is not as clear-cut as the fibers-plane distinction;
furthermore, the term structure effects that occur at different time-scales are likely correlated.
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Hence, having the coefficient of 1 on xit for the short rate in eq. (15) is not really
a restriction but a “normalization.” That said, the two normalization choices are not
equivalent (if the signs of the ρi’s in eq. (16) are unrestricted): eq. (16) implies eq. (15),
but not vice versa. For example, the specification

rt = φ + x1t + x2t − x3t,(17)

dxit = κi(µi − xit)dt + σi

√
xitdBt.

is covered by the normalization (16) but not by the normalization (15).
The normalization (15) has become quite standard, and almost all studies of the multi-

factor CIR models have used it (e.g., JKS (2003) and Duffie and Singleton (1997)). Be-
sides tradition, the likely reason for the prevalence of the normalization (15) is that such
a normalization is consistent with the positive-definiteness of the nominal short rate. For
this reason, I shall refer to this normalization as the “positive-definite normalization”.
However, the positive-definiteness is not as compelling a reason as it might appear. The
short rate process (15) is indeed bounded at zero (if φ = 0), but it would poorly describe
the short rate behavior if the short rate was indeed at or near the zero boundary. The
Japanese experience in the 2000s clearly shows that if the nominal short rate hits the
zero bound, it can stay there for quite some time before rising again. Such a behavior
can be captured by Black (1995)’s “interest rates as options” model, in which the short
rate takes the form

(18) rt = max[r∗t , 0],

where r∗t is a shadow-rate process that can go below 0. By contrast, the process described
by eq. (15) does not spend much time at the boundary.16 Recall also that the empirical
studies that use the normalization (15) without imposing a restriction on φ often find
that φ is negative (e.g., Duffie and Singleton (1997) and JKS (2003)), thus the positive-
definiteness is anyway not satisfied by the model with positive-definite normalization.

The US experience of the 2001-2003, during which the Fed’s target rate was lowered
from 6.5% to the historical low of 1%, is also a revealing episode. According to the
one-factor CIR model (14), the fourfold reduction in the short rate in 2001 should have
reduced the interest rate volatility by twofold. By contrast, interest rate uncertainty
as measured from eurodollar futures options tended to rise in 2001, as can be seen in
Figure 1. Note that under the normalization (15) even the multi-factor version of the
CIR model would have problems with this episode: because xit’s are positive processes,
rt (= φ +

∑

i xit) being low means that xit’s have to be small, thus the volatility of the
short rate would also tend to be low. The “non-positive-definite” normalized models,

16Note that the one-factor CIR model is a reflecting boundary process. In the case of the multi-factor
model (15), all factors (x1t, x2t, ...) have to be zero for the process to be at the boundary, thus it is even
less likely to spend time at or near the boundary.
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on the other hand, would have easier time in this regard.17 For example, one can obtain
a declining level and rising volatility when the “−x3t” term in eq. (17) declines.

Another problem with the normalization (15) is that it has difficulty capturing certain
interest rate distributions that arise in practice. Note that options on eurodollar futures
with different strikes can provide information on the whole (risk-neutral) distribution,
not just the means and variances of the distribution. We know from these data that the
distribution of future short rate can display a positive, negative, or zero skewness. For
example, the risk-neutral probability density function based on the options data (Figure
4) on March 20, 2007 is clearly asymmetric and shows a negative skew. There are also
times during which the opposite (positive) skew is observed.
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Figure 4: Risk-neutral probability density function of the short rate 1-year-ahead, based on the eu-
rodollar futures options (Source: internal data, Division of Monetary Affairs, Federal Reserve Board).

It is well known that the unconditional distribution of the CIR process has a positive
skew. The conditional distribution of the CIR process f(rt+τ |rt) is not easy to charac-
terize in a simple manner, as its shape depends on rt and the parameters of the model.
Typically though, the conditional distribution has a positive skew or is close to symmet-
ric. Therefore, the kind of distribution seen in Figure 4 is difficult to capture with the
CIR model.18 The multi-factor CIR model with normalization (15) would face similar

17Besides the present paper, the only other paper (that I am aware of) that explores the empirical
consequences of non-positive-definite normalization is Backus et al (2001). Their main focus is different
(they focus on predictability, rather than volatility), but they also find that the non-positive-definite
normalization (their models D,E) describes data better than the positive-definite normalization (their
model C); their model E is the eq. (17) in the present paper. Incidentally, note that the “canonical
specification” of Dai and Singleton (2000) corresponds to the normalization (16) in this paper, rather
than the normalization (15).

18The A1(n) USV models of CDG (2002) and CDGJ (2004) also have problems in this regard, as they
can produce neither the positive skew nor the negative skew. Thus they might encounter difficulties in
pricing out-of-money options, whose prices tend to be sensitive to distributional assumptions.
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difficulties, as it is a sum of “positive-skewed” processes. By contrast, non-positive-
definite normalization like (16) or (17) can potentially accommodate different cases of
skewness (+/0/−) observed in the options market.

The QG model has also been traditionally specified with an analogous “positive-
definite normalization.” In particular, LZ (2006)’ 3-factor QG model study uses a nor-
malization (same as Ahn, Dittmar, and Gallant (2002)) that sets ρ in eq (7) to zero and
the diagonal elements of the Ψ matrix to 1.19 A quadratic form rt = φ + x′

tΨxt, where
Ψ is a positive-definite matrix (thus has a Cholesky decomposition Ψ = ZZ ′), can be
written as φ+ x̃2

1t + x̃2
2t + ...+ x̃2

nt (where x̃t = Z ′xt). Note that this form is reminiscent of
the positive-definite normalization (15) of the CIR model, hence we may expect similar
difficulties as those explained above for the multi-factor CIR model.20 Therefore, also
for the QG model, a non-positive-definite normalization may be more promising than
the “traditional” (positive-definite) normalization for the past few decades’ data.

3.4. Potential Problems with Conventional Estimation. As discussed briefly in
the Introduction, the empirical evidence on USV from no-arbitrage term structure
model-based studies is somewhat mixed. Part of the problem is that it is difficult to
tell how much of the conclusion in some of these studies are due to the richness of the
model, as opposed to the correctness of the model.

Consider, for instance, the study of CDGJ (2004). They find that their A1(4) USV
model describes data better than an A1(3) non-USV model. Though the A1(3) non-USV
model is not nested by the A1(4) USV model, the latter is a richer model in the usual
sense, having one more factor and more parameters. Hence there is a concern that the
outcome reflects the richness of the model instead of the presence of USV.

There may be a similar concern in the case of Joslin (2007), who concludes against the
presence of USV. He finds that A1(4) and A2(4) non-USV models capture bond option
prices quite well and generate smaller option pricing errors than the USV counterparts.
However, these are very rich models with many parameters. Especially in view of the fact
that bond option prices were also used in the estimation (i.e., the estimation explicitly
tries to minimize option pricing errors), some caution is warranted in interpreting the
result.

A well-known result in latent-factor term structure modeling may serve as a useful
reminder: estimations of 3-factor latent-factor models can fit the last 15 years’ yield
data quite well (typical fitting error for the 10-year yield being 5 basis points or less),
but this does not mean that the model captures well the important features of the data
that are not explicitly fitted (such as the term premia and volatility variation), as the

19Fixing the diagonal elements of Ψ at 1 by itself does not guarantee the positive definiteness of
the interest rates. (Depending on φ or the off-diagonal elements of the matrix Ψ, it can be non-
positive-definite.) However, I shall still refer to this normalization as “positive-definite normalization”
to emphasize the motivation behind the normalization.

20However, the problem might be less severe for the QG model (than the multi-factor CIR model),
since the factors are allowed to have a general correlation.
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literature has found on many occasions. The flexibility inherent in latent-factor models
is thus a double-edged sword; in some cases the model might fit “too well” the aspects
of the data that are explicitly asked to be fit.21

In principle, this might not be a problem if one has long enough data. In practice,
however, commonly used estimation techniques in the literature might not have enough
discipline to guard against the possibility of “obtaining conclusions by design.” There
are at least two problems with conventional estimation techniques in a typical setting:

(I) As emphasized in Kim and Orphanides (2005), there is a severe small sample
problem. For example, a standard ML estimation of the 3-factor affine-Gaussian model
with a 1990-2003 sample generates term premia in forward rates that most market
participants would find nonsensical (even though the bond pricing errors are small).
The problem is that the time span of the samples typically used in the term structure
estimation is too short to pin down some of the key parameters that determine the
behavior of the expectations (in the physical measure).

(II) A second problem is that the basic premise of the classical estimation, namely
having the “true model” (or testing if a model is true), is untenable for the present
context. As the discussion in Sec. 3.1 makes it clear, time-homogeneous diffusion mod-
els (like affine models and QG models) are at best an approximation of a far more
complicated model (or reality); it is a foregone conclusion that these models (and even
the jump-diffusion models) would be rejected if one focuses on the features at short
enough time scales. Even aside from the issue of high-frequency dynamics, it is clear
that reduced-form latent-factor models are just a “statistical representation” of data,
and hence there is no assurance that the classical criterion function (likelihood func-
tion in the case of the ML estimation) of the model should have a unique “meaningful”
maximum: it is possible that there are different local maxima that fit various aspects of
the data with differing degree of emphasis, e.g., one maximum might have a relatively
good fit of volatility dynamics, another maximum might have a particularly small bond
pricing errors, and so on.

These two problems raise questions about the relevance of the asymptotic concept
that underlies much of the classical econometrics. Some papers including CDGJ (2004)
proposed to use Bayesian techniques instead. However, they have mostly used unin-
formative (flat) priors (hence have not introduced extra information or constraints to
address the problems), so it is not clear whether and how they can overcome above
problems.

4. reexamination of relative pricing

The remainder of this paper explores whether a more encouraging result would be
obtained in bonds/options relative pricing once the potential problems discussed above
are taken care of in some way.

21Kim (2007) discusses an example in which long-horizon survey inflation forecasts are fit “too well”
in a latent-factor model of inflation and nominal term structure.
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4.1. More on the QG Model. For this investigation, I shall restrict attention to
the quadratic-Gaussian class of models. The principal motivation for focusing on the
QG model is to address several questions that naturally arise from the recent 3-factor
QG model study of LZ (2006), which is arguably the most sophisticated model so far
explored in the bonds/bond-options relative pricing. The rather disappointing relative
pricing performance that they find is somewhat at odds with Ahn et al (2002) and
Kim (2004), who used earlier and longer samples and concluded fairly positively about
the QG model’s empirical performance, especially as regards its ability to capture the
volatility and term premium variations. Do LZ (2006)’s findings indicate that the QG
model works less well for recent years? Are they really evidence for strong USV? In other
words, beside its inability to capture the high-frequency features discussed in Sec. 3.1
(which is shared by other models like affine models), does the QG model have difficulty
also in capturing the lower-frequency variations in volatility and bond option prices?
Beyond these immediate questions, the QG model merits more study also because it has
not been explored as extensively as affine models despite its many attractive features.

Reduced-form latent-factor models like affine models and QG models are implicitly a
projection of various information about interest rates onto a dynamical basis (statistical
representation of data). The QG model is particularly appealing in this regard, as it can
be viewed as a multivariate Taylor series representation (reminiscent of the polynomial
regression (series estimator) in nonparametric statistics; see, e.g., Andrews (1991)), i.e.,
bond yield of an arbitrary maturity could be represented as

(19) yt,τ = aτ +
∑

i

bτ,ixit +
∑

ij

Cτ,ijxitxjt + ...

for some set of variables xt that follow the multivariate Gaussian (Ornstein-Uhlenbeck)
process. Note that if one had to treat the coefficients aτ , bτ,i, Cτ,ij separately for different
maturities, that would be not only inefficient (since the coefficient for adjacent τ ’s are
expected to be similar) but also negligent of the no-arbitrage principle. Specifying the
QG model in the form of eq. (7), i.e., via the specification of the short rate and the
market price of risk, is a convenient way of writing down a second-order polynomial form
that is arbitrage-free and, at the same time, general and tractable.

If the expansion (19) is truncated at the first order, one obtains the affine-Gaussian
model.22 While the affine-Gaussian model has been useful in many contexts, it gives
up the possibility of capturing the time-varying volatility of interest rates.23 The affine

22In contrast to the affine-Gaussian and QG models, it is difficult to view models like multi-factor
CIR models as a series expansion. No matter how many factors they have, it is hard to rationalize
that the one can project information about interest rates onto a set “square-root” factors such that
the factors are all independent. Indeed, estimated CIR models typically lead to the result that the
model-implied state variables are correlated (e.g., Duffie and Singleton (1997)).

23In the affine-Gaussian model, the instantaneous excess return (bond risk premium) et,τ takes the
form et,τ = −τb′τΣλt. (See, for example, eq. (7) of Duffee (2002)). Thus, all of the variation in et,τ

comes from the variation in the market price of risk λt, and nothing from Σ, which is constant in the
affine-Gaussian model. If we think of Σ as variable, this leads to second-order effects of the form xitxjt;
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literature has dealt with this problem by modifying the factor dynamics (xt-process)
from the Gaussian process to a non-Gaussian process that has the time-varying volatil-
ity feature. This, however, introduces restrictions on the factor space and the factor
dynamics. For example, if an affine model factor x1t is a volatility variable, it has to be
nonnegative, and this restricts the feedback and correlation structure of x1t with other
variables. As noted by Dai and Singleton (2000), there is a trade-off between the rich-
ness of volatility dynamics and the flexibility of factor correlation in the affine model,
the latter aspect decreasing in the order A0(n), A1(n), ..., An(n). By contrast, the QG
model does not face this trade-off, and there is no need to classify the general n-factor
model into subclasses as in affine models. It is also particularly attractive for the present
problem (bond option pricing) that multiple factors can affect the volatility dynamics
in the QG model, as opposed to having just a single volatility factor as in the A1(3) or
A1(4) model considered by CDG (2002) and CDGJ (2004).24

4.2. Overall Plan. In this paper I estimate two versions (normalizations) of the max-
imally flexible 2-factor QG model. The use of a 2-factor model here can be viewed as
complementary to the studies of Joslin (2007) and CDGJ (2004) using much richer (4-
factor affine) models. Recall from the discussion in Sec. 3.4 that with rich models there
is a risk that a desired conclusion is unwittingly obtained “by design.” Therefore, while
it is important to develop realistic models that can fit bond option prices well, it is also
worth investigating whether some of the fundamental questions can be addressed using
simple models.

In this paper, I intentionally make it challenging for the model to match the observed
bond option prices in two ways: first, using a relatively parsimonious model in the form
of a 2-factor model (so that there would be little concern of overfitting), and second, by
restricting attention to purely relative pricing (i.e., without using bond option data in
the estimation). Of course, in this case there is a risk that the model is “too challenged,”
i.e., it might fare too poorly to be of interest. We shall see, however, that the 2-factor QG
model has a surprisingly rich empirical content, and has much to say about the USV and
the relative pricing puzzle. The added benefit is that due to the relative simplicity of the
model it is easy to pinpoint the sources of problem when something doesn’t work well;

this can be viewed as another motivation for the QG model. (This is however only heuristic, since bτ

also depends on Σ and the expression was derived under the assumption of constant Σ.) In the affine
models with stochastic volatility factors, the excess return takes the form et,τ = c0 + c1νt + c2x2t + ...,
i.e., affine in the volatility factor νt and other factors; higher-order effects like ν2

t or νtx2t are ruled out
in affine models. One might view some of the factors xit in the affine model as compensating for the
“omitted variables” effect, but the factors might be too constrained by other requirements to play that
role in a relatively low-dimensional model.

24The QG model also turns out to have an elegant mathematical structure. In particular, the
differential equation (Riccati equation) for the QG model admits an exact solution, first derived in Kim
(2004). Beyond potential practical benefits, there may be a deeper significance to this, as the exact
solvability of the differential equation is connected to the existence of a hidden symmetry (underlying
Lie group) in the general QG model.
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we shall see that the cases in which rather poor results are obtained are also interesting,
as they may shed light on why some of the results in the existing studies are poor.

4.3. Normalizations. I explore two different normalizations in light of the discussion in
Sec. 3.3 about the potential limitations of the positive-definite normalization. Especially
in view of the “multivariate Taylor series approximation” motivation of the QG model,
it befits to let the data decide the normalization.

Specifically, the following two specifications are estimated. One version, denoted
QG2++, uses the “positive-definite normalization,” the same as in LZ (2006). In the
notation of eqs. (2) and (7), it is:

(20) ρ =

[

0
0

]

, Ψ =

[

1 Ψ21

Ψ21 1

]

, K =

[

K11 0
K21 K22

]

, Σ =

[

Σ11 0
0 Σ22

]

,

variables not written out (φ, µ, λa, Λb) being unrestricted.
The second version, denoted QG2+−, is the same as QG2++, except that the Ψ matrix

has one diagonal element normalized to 1, and the other diagonal element normalized
to −1, i.e.,

(21) Ψ =

[

1 Ψ21

Ψ21 −1

]

.

Thus the QG2+− model is obviously not positive-definite.25

As discussed in connection with the CIR model, a more promising model of the short
rate for situations where the non-negativity of interest rates matters would be a Black
(1995)-type model,

(22) rt = max[φ + ρ′xt + x′

tΨxt, 0].

The very-near zero-boundary behavior of the short rate is simply too singular to be
described by analytic functions like (7), regardless of the positive-definiteness constraint.
Unfortunately, computations with the model (22) would be far more complicated, as
yields would be no longer quadratic in state variables. We shall thus simply assume that
the specification in eq. (7) is a good approximation to eq. (22) for the US data under
consideration (though obviously it would not be so for the Japanese data). Recall also
that other models that are popular in the literature, such as the Ai<n(n) affine models,
are also non-positive-definite, but this reason by itself has not discouraged researchers
from using them.

25The following normalization

K =

[

K11 0
K21 K22

]

, Σ =

[

1 0
0 1

]

, µ =

[

0
0

]

,

with φ, ρ, Ψ, λa, Λb being unrestricted, is another way to introduce (allow for) non-positive-definiteness;
this may be more convenient especially in the case of higher-dimensional models. Leippold and Wu
(2003) used this normalization, but they imposed the positive-definiteness condition in the estimation,
which makes it equivalent to the QG2++ model.
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4.4. Empirical Setup. The models are estimated with weekly-sampled (every Wednes-
day) LIBOR/swap-based zero-coupon yields (at maturities of 3-month, 6-month, 1-, 2-,
4-, 7-, 10-year) from January 1995 to June 2007.26 Weekly data are used here (as opposed
to the daily estimation of LZ (2006)) to alleviate the concerns about the inhomogene-
ity of the high-frequency volatility dynamics, as discussed in Sec 3.2. As emphasized
earlier, this paper examines only the pure relative pricing: options data are not used in
the estimation; instead they are reserved for comparison with the values implied by the
estimated model.

For estimating the model, in addition to the standard ML method based on the
extended-Kalman filter (linearizing the observation equation),27 I explore the use of
certain “regularized ML” estimations. Since the QG model, like affine models, is an
“obviously false” model, there is little point in testing whether the model is rejected.
Instead, the relevant question here is how well the model works as an approximation,
in particular, whether it can capture key features of the bond option price variation.
For such an inquiry, it is not clear that the standard ML estimation (inference based on
the global optimum of the likelihood function) tells all that we need to know about the
model. Due to the informational insufficiency (small sample problem) and the inherently
approximate nature of the models (discussed in Sec. 3.4), the estimation problem may
be less “well-posed” than is often presumed.

Therefore, I propose to approach the problem from the perspective of the so-called
ill-posed inverse problems. There is an extensive literature on this sort of problems in
physical sciences and engineering, but they have received relatively little attention in
econometrics.28 Some examples in statistics do belong to this class of problems, but are
not often labeled as such. One example is the “mixture of normal distributions” model:
Suppose the data z1, z2, ..., zN are generated from the distribution

z ∼ N(µ1, σ
2
1) with prob α,(23)

∼ N(µ2, σ
2
2) with prob 1 − α.

The likelihood function of this problem does not have a global maximum: it diverges
when µ1 = z1 (or any other zi) and σ1 → 0; hence searching for the global maximum
is pointless and misleading. This example is thus a useful reminder that a problem
that looks well-posed may not be so in reality. To solve the problem, some additional

26The zero-coupon yields data are constructed by fitting a flexible parametric form to the 3m, 6m,
1y LIBOR rates and available swap rates.

27See LZ (2006, Sec. II.B) for relevant formulae for the standard extended-Kalman-filter-based
maximum likelihood estimation of the QG model and Harvey (1989, Sec. 3.7.2) for a more general
discussion of the extended-Kalman filter.

28The strict definition of a “well-posed” problem according to Hadamard is that (1) the solution exists
and is unique and (2) the solution depends continuously on data. Ill-posed problems in the narrow sense
can be defined as the problems that are not “well-posed”. However, the techniques developed in the ill-
posed problems literature are also useful for nearly-ill-posed problems (e.g., when the likelihood function
is nearly singular or almost flat). O’Sullivan (1986) provides a survey of ill-posed problems in which
randomness plays a role.
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information (or constraint) has to be provided to render the problem “better posed”;
such a procedure is generically called regularization.29

For the term structure estimation problem at hand, I explore two ideas for regular-
ization. One idea is to supplement the standard estimation with information (or priors)
about the expected short-term interest rate from survey forecasts. This is intended to
address the first of the two problems discussed in Sec. 3.4, namely the small sample
problem. Because the source of the problem is that the parameters of the model related
to the interest rate expectations in the physical measure are often only weakly identified
due to the relatively short time span of data, one can expect that providing information
about the short rate expectation in the form of a noisy proxy (survey forecast) would
help.

This can be done by including the condition

(24) Esurvey
t (yt+u,3m) = Et(yt+u,3m) + ǫF

t,u, ǫF
t,u ∼ N(0, σ2

F,u)

in the estimation. Note that in the QG model Et(yt+u,3m) is quadratic in the state
variables, as in the case of bond yields. For Esurvey

t (yt+u,3m), I use the 6-month and
12-month horizon forecasts of the 3-month LIBOR rate from the Blue Chip Financial
Forecasts (BCFF) survey, and the long-horizon BCFF forecast, which I approximate as
a 7.5-year horizon forecast.30 The variables σF,u (u = 6m, 12m, 7.5y) can be viewed as
the size of the assumed measurement errors, and will be discussed more below.

One could also introduce an additional regularization, in the form of some information
(or prior) about the time-variation in interest rate volatility. The idea is to compensate a
little bit for the volatility information lost due to a less frequent sampling (necessitated by
the “break down” of diffusion models at high frequencies); recall the discussion at the end
of Sec. 3.2. In this regard, one could include the following condition for instantaneous
volatility,

(25) vproxy
t,τ = vt,τ + ǫV

t,τ , ǫV
t,τ ∼ N(0, σ2

V,τ ),

where vproxy
t,τ denotes some proxy for the instantaneous volatility and vt,τ denotes the

model-implied instantaneous volatility, i.e., eq. (9).31 In this paper, I take τ = 2-year,
i.e., the instantaneous volatility for the 2-year yield.

29In the case of the “normal mixtures” problem, one could add a condition that σ1/σ2 > c for some
number c; see, for example, Hathaway (1985). Another example in statistics that can be viewed as a
regularization is the ridge-regression for nearly-multicollinear problems.

30The BCFF forecasts for the next 5 or 6 quarters are available every month, while the long-horizon
BCFF forecasts are available twice a year. Note that these are less frequent observations than yields
data, but the Kalman filter setup can easily handle such (missing data) situation; see, e.g., Kim and
Orphanides (2005).

31I use vt,τ rather than v2
t,τ for regularization in order to avoid the possibility of the occasions of

large v2
t,τ having an excessive influence. Note that the formula for vt,τ is not quadratic in xt, but it can

be still straightforwardly implemented in the standard extended-Kalman filter.
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Note that instantaneous yield volatility is unobserved (and in fact not well-defined),32

but still one could come up with simple but useful proxies. This paper uses the rolling
standard deviation of daily changes of swap yields (centered at t).33 Of course, there
is some ambiguity about the length of the window for computing the rolling standard
deviation. If the window was too short, the proxy would be very jagged and heavily
influenced by large realized change in the swap yield on certain dates. On the other hand,
if the window was too long, much of the information about the variation of volatility
would be washed out. As a compromise, I use the 6-month window, which is shown in
Figure 5. To give an idea about the short-window case, Figure 5 also shows the proxy
based on the 1-month window.
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Figure 5: Rolling standard deviation of daily change in 2-year swap yields (for 1-month and 6-month
windows).

In both regularization proposals (eqs. (24) and (25)), the true “market variables”
(Et(yt+u,3m) and vt,τ ) are unobserved, and the proxies are necessarily imprecise. Nonethe-
less, the proxy information can be introduced “fairly weakly” by fixing the measurement
errors at a sizeable value, but not “too weakly” so as to make it irrelevant. In this spirit,
I set σV,2y =40 bp, which is almost twice the standard derivation of the proxy vproxy

t,2y

(based on the 6-month rolling window). Similarly, I take the survey forecast measure-
ment errors to be σF,6m = 30bp, σF,12m = 40bp, and σF,7.5y = 100bp. While survey

32Because jump-like events that cause very high realized volatility on certain dates are not “in the
model,” even if one could measure volatility at very high frequencies, the result would not lead to a
suitable empirical proxy for the vt,τ for the model.

33Other proxies such as GARCH-based estimate of volatility can be also used. Note, however,
that standard GARCH models (GARCH(1,1), EGARCH(1,1), etc.) may be affected by strong data
announcement effects (discussed in Sec. 3.1).
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forecasts might not capture the “true” expectations in the market, most practitioners
would find it also strange if the market expectations deviated by a large amount (e.g.,
1 percentage point) from the survey forecasts.

While the conditions (24) and (25) can be handled most conveniently by including
them in the observation vector of the extended-Kalman-filter-based ML estimation,34

one can also pose the estimation problem as

max

[

(const) log Ls −
∑

u,t

1

σ2
F,u

(Esurvey
t (yt+u,3m) − Et(yt+u,3m))2(26)

−
∑

τ,t

1

σ2
V,τ

(vproxy
t,τ − vt,τ )

2

]

,

where Ls is the standard ML likelihood function. This is the form that is more familiar
in the regularization literature (see, for example, Press et al (2007, Sec. 19.4)); we can
interpret the fixed parameters (1/σ2

F,u and 1/σ2
V,τ ) as “regularization coefficients”. Note

that the standard (non-regularized) estimation is recovered in the limit σF , σV → ∞.
The regularized estimations (with fixed σF , σV ) can be also viewed in the Bayesian spirit,
the conditions (24) and (25) being interpreted as informative priors.35

In sum, I consider two regularization implementations, one with the survey-forecasts
(which I shall denote RF ), and the other with both the survey-forecasts and the volatil-
ity proxy (denoted RF,V ). Together with the standard estimation with no regularization
(denoted Rnone), there are three options for the estimation of the model. With two dif-
ferent normalizations to be explored, this leads to six estimations, denoted QG2++Rnone,
QG2+−Rnone, QG2++RF , QG2+−RF , QG2++RF,V , and QG2+−RF,V .

4.5. Estimation Results. The parameter estimates for the six estimations are given in
Table 1. These represent the global optimum of the respective (standard or regularized)
likelihood function. In all these estimations, longer-term yields are fitted quite well,
while the 3-month yield is not fitted as well, a typical 3-month yield measurement error
size being about 30 bp (δ3m in Table 1).

Let us first examine the empirical content of the QG2++Rnone and QG2+−Rnone es-
timates (i.e., the standard ML estimation of the QG2++ and QG2+− models). Of im-
mediate interest is how these models perform in bond option pricing. Table 2 sum-
marizes the results for the 1-, 2-, and 5-year at-the-money (ATM) cap pricing.36 In

34This is indeed the way the “regularized estimations” are performed in the present paper.
35Kim and Orphanides (2005) treat eq. (24) in a more classical spirit, allowing σF,6m and σF,12m to

be optimized in the estimation. I have also experimented with having σF,6m, σF,12m as free parameters;
in this case I obtained smaller values for σF,6m, σF,12m than the numbers used here.

36For comparison with model-implied cap prices, I use monthly data (last Wednesday of the month)
on market cap prices, constructed from the cap implied-volatility data from Bloomberg (available from
January 1997) and the zero-coupon LIBOR-swap yield curve described earlier. The formula for the
cap prices in the QG model can be found in Leippold and Wu (2002) and LZ (2006). To compute
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QG2++Rnone QG2++RF QG2++RF,V

K11 0.0275(0.0917) 0.3205(0.0501) 0.3529(0.0550)
K21 0.0281(0.0359) 0.1108(0.0684) 0.0781(0.0304)
K22 0.0438(0.0350) 0.3000(0.0572) 0.2549(0.0675)
Σ11 0.0228(0.0023) 0.0110(0.0051) 0.0160(0.0032)
Σ22 0.0116(0.0046) 0.0038(0.0006) 0.0048(0.0014)
µ1 -0.0230(0.1575) 0.0773(0.0385) 0.1364(0.0323)
µ2 0.2019(0.1482) 0.0124(0.0042) 0.0121(0.0027)
φ 0.0076(0.0028) 0.0110(0.0001) 0.0114(0.0002)
Ψ12 0.8993(0.1265) 18.0680(6.7975) 6.5476(3.5520)
λa1 3.1801(8.9583) -2.2975(0.3498) -2.7064(0.5033)
λa2 0.2471(0.4986) 1.0029(0.3544) 0.3125(0.3737)
[ΣΛb]11 0.6718(0.1314) 0.3919(0.0518) 0.4318(0.0566)
[ΣΛb]21 -0.0135(0.0736) -0.0061(0.0198) 0.0170(0.0212)
[ΣΛb]12 -0.9537(0.7545) -0.1928(0.2231) -0.7344(0.2771)
[ΣΛb]22 -0.0219(0.0766) -0.2846(0.0535) -0.3043(0.0657)

δ̃3m 0.0026(0.0004) 0.0027(0.0004) 0.0027(0.0004)

δ̃6m 0.0013(0.0002) 0.0013(0.0003) 0.0013(0.0003)

δ̃1y 0.0002(0.0000) 0.0002(0.0000) 0.0002(0.0000)

δ̃2y 0.0008(0.0001) 0.0007(0.0001) 0.0007(0.0001)

δ̃4y 0.0006(0.0001) 0.0006(0.0001) 0.0006(0.0001)

δ̃7y 0(0.0000) 0(0.0000) 0(0.0000)

δ̃10y 0.0005(0.0001) 0.0005(0.0001) 0.0005(0.0001)
QG2+−Rnone QG2+−RF QG2+−RF,V

K11 0.0071(0.0252) 0.0166(0.0425) 0.0454(0.0767)
K21 -0.3257(0.1225) 0.0273(0.1755) 0.0797(0.1166)
K22 0.6553(0.3189) 0.3084(0.0485) 0.3167(0.0504)
Σ11 0.0256(0.0010) 0.0145(0.0034) 0.0231(0.0033)
Σ22 0.0358(0.0023) 0.0236(0.0019) 0.0261(0.0014)
µ1 0.3657(0.0560) 0.1690(0.0457) 0.1530(0.0445)
µ2 0.1419(0.0540) -0.0501(0.0758) -0.1099(0.0499)
φ 0.0115(0.0001) 0.0444(0.0067) 0.0517(0.0053)
Ψ12 0.1663(0.2518) 0.4412(0.6188) 0.0912(0.5008)
λa1 -5.3861(0.4586) 0.5606(1.7735) 0.4846(1.2583)
λa2 -2.2603(0.7341) 6.8238(1.9649) 3.6010(1.3626)
[ΣΛb]11 0.4935(0.0995) -0.0707(0.1685) -0.0869(0.1851)
[ΣΛb]21 0.5254(0.1429) -1.2386(0.3280) -0.8383(0.1677)
[ΣΛb]12 0.4517(0.0417) 0.0361(0.0724) 0.0534(0.1058)
[ΣΛb]22 -0.4143(0.3608) 0.1292(0.1388) 0.1180(0.1356)

δ̃3m 0.0026(0.0004) 0.0031(0.0006) 0.0032(0.0006)

δ̃6m 0.0013(0.0002) 0.0015(0.0004) 0.0015(0.0004)

δ̃1y 0.0002(0.0000) 0(0.0000) 0(0.0000)

δ̃2y 0.0007(0.0001) 0.0008(0.0001) 0.0008(0.0001)

δ̃4y 0.0005(0.0001) 0.0007(0.0001) 0.0007(0.0001)

δ̃7y 0(0.0000) 0(0.0000) 0(0.0000)

δ̃10y 0.0005(0.0001) 0.0005(0.0001) 0.0005(0.0001)

Table 1: Parameter estimates for the QG2++ and QG2+− models. The fixed (normalized) parameters

are as follows: K12 = 0, Σ12 = Σ21 = 0, ρ1 = ρ2 = 0, Ψ11 = 1, and Ψ22 = 1 for QG2++ and = −1 for
QG2+−. The measurement errors for yields δτ are parameterized as δ2

τ = δ̃2
τ + c2, where I have included

a small constant c (=3 bp) to avoid the case of a zero measurement error. Standard errors (based on
the BHHH formula) are given in parentheses.
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mean std MAE corr
market 1-year 15.5 4.2

2-year 67.8 20.7
5-year 301.7 86.6

QG2++–Rnone 1-year 17.3 4.0 0.42 -0.15
2-year 61.8 6.7 0.21 0.46
5-year 264.3 39.5 0.14 0.91

QG2+−–Rnone 1-year 19.2 4.4 0.53 -0.37
2-year 67.9 4.5 0.27 0.07
5-year 286.5 39.3 0.16 0.86

QG2++–RF 1-year 20.0 4.7 0.57 -0.32
2-year 69.3 4.8 0.28 0.06
5-year 285.7 33.7 0.15 0.94

QG2+−–RF 1-year 14.9 4.5 0.19 0.64
2-year 52.8 16.7 0.22 0.91
5-year 233.6 66.4 0.22 0.92

QG2++–RF,V 1-year 18.1 3.9 0.46 -0.25
2-year 64.5 4.9 0.23 0.44
5-year 276.0 36.4 0.14 0.95

QG2+−–RF,V 1-year 17.5 4.7 0.21 0.68
2-year 60.6 17.2 0.12 0.92
5-year 262.6 66.7 0.13 0.94

Table 2: Summary measures of relative pricing performance. “MAE” is the mean absolute errors for
the percentage pricing errors. “corr” is the simple correlation between the model-implied and market
cap prices.

short, the relative pricing performance is poor. The pricing errors (computed as ǫ =
(P model−P market)/P market) are large, as indicated by the size of the MAE (mean-absolute
errors). The correlation between the model-implied value and the market value is nega-
tive for the 1-year cap for both the QG2++Rnone and the QG2+−Rnone estimates, and the
variability (sample standard deviation) of the model-implied cap prices is much smaller
than that of the market cap prices.37

the model-implied ATM cap prices, I use the model-implied ATM cap strike rate (based on the fitted
yields) for internal consistency.

37These results are reminiscent of those for the multi-factor CIR models in JKS (2003), who also
report much smaller standard deviation of the model-implied cap prices than those of the market prices
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Figure 6: Two-year ATM cap prices implied by the QG2++Rnone, QG2+−Rnone, QG2+−RF ,

QG2+−RF,V estimates.

Figure 6 compares the market price of the 2-year ATM cap with the QG2++Rnone-
based and the QG2+−Rnone-based prices. The QG2+−Rnone result is especially poor,
being largely flat over the entire 1997-2007 period, but the QG2++Rnone result is also
very poor, showing little resemblance to the market data in the 1997-2000 period, and
failing to capture much of the notable rise in 2001 and the decline in 2004-2006. These

(their Table 6). For example, the 3-factor CIR model-implied standard deviations for the 2-year and
5-year caps are 5.01 bp and 8.52 bp, respectively, while those of the market 2-year and 5-year caps are
15.8 bp and 48.88 bp, respectively.
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Figure 7: Instantaneous volatility of the 2-year yield (vt,2y) implied by the QG2++Rnone, QG2+−Rnone,

QG2+−RF , QG2+−RF,V estimates. The empirical proxy based on the 6-month window rolling standard
deviation is also shown for comparison (thin solid line).

results indicate a shortcoming in the estimated models that is far more basic than their
inability to capture high-frequency variations in option prices.

Figure 7a, which plots the model-implied instantaneous volatility of the 2-year yield
(i.e., vt,2y) for QG2++Rnone and QG2+−Rnone, explain why the relative pricing perfor-
mance of these estimates is poor: the model-implied vt,2y’s show little resemblance to
the empirical proxy based on the rolling standard deviation. Indeed, in the 2001-2005
episode during which the policy rate was aggressively lowered and then raised back, the
model-implied volatility and the empirical proxy behave in an almost opposite manner.



30 D. H. KIM

Even granting the imperfection of the empirical proxy, this clearly points to a very poor
volatility modeling.

The QG2++Rnone-based and QG2+−Rnone-based vt,2y’s in the 2001-05 period show a
positive comovement with the policy rate. I have noted in Sec. 3.3 that this kind of
behavior is expected for the CIR model and, to some extent, also for the QG model with
positive-definite normalization. Interestingly, the estimated QG2+− model also implies
a poor volatility modeling, indicating that the non-positive-definite normalization did
not help.38 It turns out, in the QG2+−Rnone estimation there is another local maximum,
whose likelihood value is a little bit lower than the global maximum but has more
reasonable properties.39 This other maximum develops into the global maximum in the
regularized ML estimations.

The regularized ML estimation of the QG2+− model leads to a surprisingly good
relative pricing performance. As can be seen in Table 2, the pricing errors (MAEs) for the
1-year cap are much smaller for the regularized estimations (QG2+−RF , QG2+−RF,V )
than the standard estimation (QG2+−Rnone). MAEs, however, do not tell the whole
story: if the market price and the model price had the same time variation but differed
by a constant, one could still have significant MAEs. The variability and correlation
numbers in Table 2 are thus also useful: the sample standard deviations of the cap
prices implied by the QG2+−RF and the QG2+−RF,V estimates are much larger than
those of the QG2+−Rnone estimate and more in line with those of the market data.
Furthermore, the correlation between the model and the market data for the 1-year cap,
which was negative for QG2+−Rnone, has become positive; in the case of the 2-year and
5-year caps, it exceeds 90%.

Figure 6b illustrates the dramatic improvement in bond option pricing for the case of
the 2-year ATM cap. The QG2+− model (both RF and RF,V ) still misses a substantial
part of the month-to-month variation in the market cap price and has difficulty in
capturing the full extent of several of the sharp moves (e.g., in late 2001 and in mid
2003).40 But it now does quite well in capturing the broader and slower aspects of
cap price movements (e.g., decline in 1997, decline in 2000, rise in 2001, decline from
mid-2004). The QG2+−RF -based 2-year cap price tends to be lower than the market
price, but their variations are quite similar. Thus, one already obtains quite encouraging
results with the RF regularization, i.e., even without the “volatility regularization” (25).

38I have also tried an alternative quasi-ML estimation based on the augmented state space method
in Kim (2004) without the regularization conditions, but the results were qualitatively similar to the
QG2+−Rnone estimate reported here.

39The global optimum (in QG2+−Rnone estimation) has a slightly smaller fitting errors for the 3-
month yield than the other optimum (26 bp vs 31 bp)

40This failure to capture the high-frequency effects is also reflected in the different outcomes in a
CDG(2002)-type regression with model-implied/market values: the regression of monthly change in the
2-year ATM cap price onto monthly change in yields using the QG2+−RF,V -model-implied values (cap
price and yields) gives an R2 of 0.99, while the same regression using market values (cap price and
yields) gives a much lower R2 of 0.55.
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Underlying this more successful relative pricing is the fact that the regularized estima-
tions of the QG2+− model capture the volatility dynamics better. As can be seen in Fig-
ure 7b, the model-implied 2-year instantaneous yield volatility based on the QG2+−RF

estimate shows a variation similar to the empirical proxy (in its lower-frequency move-
ments), while the QG2+−RF,V estimate produces an even closer match.

Interestingly, even if the regularized estimations are used, the model with positive-
definite normalization (QG2++) still leads to a poor volatility modeling. This in turn
results in a poor cap pricing performance: summary measures in Table 2 show that the
cap pricing performance of the QG2++RF and QG2++RF,V estimates is not much better
than the QG2++Rnone results discussed earlier.

QG2++Rnone QG2++RF QG2++RF,V QG2+−Rnone QG2+−RF QG2+−RF,V

3-month 0.97 0.97 0.96 0.98 0.98 0.98
4-year 0.99 1.17 1.10 0.86 1.01 1.01
10-year 1.03 1.28 1.18 0.85 1.00 1.00

Table 3: Root-mean-square-errors (RMSE) of the 1-year-horizon yield forecasts implied by the model,
divided by the RMSE of the 1-year-horizon yield forecasts based on the random walk hypothesis (i.e.,
Et(yt+u,τ ) = yt,τ ).

The QG2++ model also seems to produce worse term premium estimates. For exam-
ple, as can be seen in Table 3, the 1-year-ahead in-sample root-mean-square errors for
yield forecasts based on the QG2++ model tend to be larger than those based on the
QG2+− model. The forecasting errors for longer-term yields are particularly large for
the regularized estimations of the QG2++ model; for example, their 10-year yield fore-
cast errors are substantially larger than a key benchmark based on the “random-walk”
model. In fact, the excess return forecasting errors for the regularized QG2++ estimates
(e.g., 1-year holding period return on 5-year bond over the 1-year bond) turn out to be
even larger than those based on the expectations hypothesis. These results suggest that
the QG2++ model is so poor that it cannot meet reasonable regularization conditions
without generating problems elsewhere.41

As can be also seen in Table 3, the standard estimation of the QG2+− model generates
smaller yield forecasting errors than the regularized estimations of the QG2+− model.
It may be tempting to interpret this as indicating a superior term premium modeling
in the standard estimation. However, even if one were interested only in term premia
(and not in volatility), the QG2+−Rnone estimate would be a problematic one. There
are several different definitions of term premia, which are nonetheless related (“yield
premium,” “forward premium,” and “return premium”). The version that is particularly

41It is also interesting to note that the estimates of Ψ12 for QG2++RF and QG2++RF,V have absolute
values larger than 1. Thus the positive-definite condition is not satisfied in these estimations (reminiscent
of the finding of φ < 0 for multi-factor CIR models with the normalization (15) as in JKS (2003)). In
the QG2++Rnone estimation, |Ψ12| is smaller than 1, but it is close to 1.
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Figure 8: The 1-year-ahead and 7.5-year-ahead expectations of the 3-month yield, implied by the

QG2+−Rnone, QG2+−RF , QG2++RF estimates. The 1-year-ahead and the “long horizon” BCFF
survey forecasts are also shown as “+” and “o” signs, respectively.

relevant to policy discussions is the forward premium. Because the forward premium
is the forward rate minus the expected spot rate, estimating the forward premium is
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equivalent to estimating the expected spot rate across various horizons. Figure 8a shows
the expected 3-month LIBOR rate for the “long” horizon (7.5-years) implied by the
QG2+−Rnone estimate. Note that when the short-term rate is at the historical lowest
point in 2003, the model-implied 7.5-year-ahead expectation is also extremely low, being
barely above the 1-year-ahead expectation. One can safely say that such an outcome
is outside everyone’s priors, i.e., the forward premium implied by QG2+−Rnone is not
sensible. Comparison with the long-horizon survey forecast (also shown in the same
figure) helps illustrate this point. Unfortunately, this problem is hard to detect from
the usual metrics on forecasting performance (e.g., Table 3), since such metrics are
necessarily limited to relatively short horizons.42

Figure 8b plots the model-implied long-horizon expectation from the regularized esti-
mation QG2+−RF , which can be seen to be more reasonable. This is partly by design,
because the estimation was done with the condition (24) included. I’ve added the quali-
fier “partly”, since the result also hinges on the model. Figure 8c shows the result based
on the QG2++ model. Although the QG2+−RF estimation and the QG2++RF estima-
tion have used the same regularization condition (24), the behaviors of the model-implied
Et(yt+7.5y,3m) are quite different. For instance, in 2001-2005 the long-horizon forecast
implied by the QG2++RF estimate is elevated, contrary to intuition.

4.6. Summary of Implications. The key implications of various results presented so
far can be summarized as follows:

(A) The main reason for the poor relative pricing in the extant literature is likely the
poor volatility modeling. The implausible volatility dynamics implied by the QG2++Rnone

and the QG2+−Rnone estimates (as seen in Figure 7a) suggests that the likely explana-
tion of the relative pricing puzzle is a more basic one: problems in volatility modeling
(rather than USV). USV might facilitate volatility modeling (by decoupling the volatil-
ity dynamics from the term structure dynamics), but that might not necessarily be the
only way or the correct way to model volatility.

(B) The good relative pricing performance of the 2-factor model casts doubts on the
strong USV scenario. QG2+− is a relatively simple non-USV model, but it is capable
of capturing key features of the bond option (interest rate cap) price variation, apart
from the “high-frequency effects” which it misses. This result, along with the results
based on much richer models like Joslin (2007), makes a strong case against the strong
USV scenario. Thus, imposing the USV condition as in the A1(n) USV models of CDG
(2002) and CDGJ (2004) does not seem advisable for investigating the issues discussed
in Sec. 2.2 (possible relationship between term premium and interest rate uncertainty).

(C) Normalization matters. None of the estimations with the QG2++ model led to
results that are comparable to those of the regularized QG2+− model estimations. In

42Incidentally, Kim and Orphanides (2007) argue that searching for a model that generates the
smallest in-sample yield forecasting errors may be misleading, due to the look-ahead bias and other
problems.
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short, positive-definite normalization (demanding the positive-definiteness of the model)
is not promising for the past few decades’ data.

(D) Econometric technique matters. Even with non-positive-definite normalization
(QG2+− model), sensible results could not be obtained without some regularization
to address the problems of the standard estimation. Had we used the standard ML
estimation only, we would have ended up with discouraging conclusions about the relative
pricing performance of the 2-factor QG model, similar to those of JKS (2003) about the
multi-factor CIR model.

In the 3-factor QG model of LZ (2006), the points (C) and (D) may be harder to
see, because the effects can be diluted amid the greater flexibility of the model and
because it can be more difficult to separate out various sources of problems. However,
that does not mean that the problems disappeared. In fact, the problem with the
conventional estimation may be even more serious in higher-dimensional models, as the
greater dimensionality means more room for things to go wrong.

4.7. What the Present Paper Does Not Imply. It may also help to discuss what
this paper does not imply:

(A) That two factors are sufficient. As noted above, the 2-factor model (QG2+−RF ,
QG2+−RF,V ) does miss some of the sharper movements in the ATM cap prices. The
cross-sectional fit and term premia also leave room for improvement.43

It is a tall order for any model with only two sources of shocks to capture the complex-
ity of the term structure and options data. Basically, two factors, x1t and x2t, are being
asked to play many roles at the same time: current rates, expectation of future rates,
volatilities, market price of the volatility risk, market price of other risks, and so on.
This means that there is a lot of “tension” in the model in the sense of Duffee (2002).44

However, tension should not necessarily be viewed as bad. After all, tension is the other
side of the coin called “structure,” and models are a means to impose structure on the
data. One can always use a large model to fit data well, or introduce separate factors
to explain different effects. But there is an accompanying danger of losing discipline or
losing the predictive content of the model (due to the neglect of possible interrelationship
between various effects). Too little tension may be as problematic as too much tension.

Incidentally, it is not clear that there should exist a 3-factor model that captures the
full intricacy of the term structure dynamics (be it QG, affine, or other models). A
frequently used argument for the 3-factor model is based on the finding that 3 factors in
factor analysis (FA) or principal components analysis (PCA) explain something like 99%
of the term structure movements. However, this is not convincing evidence, since the

43In addition, it does not do well in capturing the time variation of the convexity bias. It is straight-
forward to compute the convexity bias implied by the estimated QG model, but I shall not discuss
detailed results on the convexity premium in this paper (to save space).

44Duffee (2002) makes the point that certain affine models impose too tight a relation between
expected excess bond returns and volatility, i.e., there is too much “tension” between the two.
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ability to reproduce the overall variability (unconditional variance) does not guarantee
that the model can capture the “correct” internal dynamics.45

In short, the low-dimensional models will always have room for improvements; the
key point is that there is no compelling reason to believe that not having the (strong)
USV feature is the source of the deficiency of these models.

(B) That the maximally flexible QG model is the best model. To address basic questions
raised by the USV debate and the relative pricing puzzle, this paper has taken an
exploratory approach, searching for robust implications rather than the best possible fit
of bond option prices. Accordingly, I have remained in the simple and familiar framework
of the time-homogeneous diffusion models, viewing them as “effective models” for “not-
too-high”-frequency data. Clearly, a more advanced model that accommodates features
like jumps and inhomogeneities can be constructed, although a considerable care may
be required in the process.46

Being an approximate statistical representation, the maximally flexible QG model
can still be consistent with many other kinds of models. While it may be suitable for
an exploratory study like this one, in some other applications (especially in the higher-
dimensional case), other (more parsimonious) models might be more convenient.

(C) That the regularization used here is the best possible one. The regularization
techniques used here should be also viewed in the light of the exploratory nature of
this paper. Clearly, one can further develop the regularization procedure. For example,
(if one is not restricting attention to the pure relative pricing) option prices can be
also utilized in the estimation, as in Joslin (2007), who developed a fast method for
computing bond option prices in affine models. A simple way to introduce the options
information would be to use the relatively short-dated swaption-implied volatility as a
proxy for instantaneous volatility in eq. (25). While very short option maturities (like
1-week maturity) have the problems that we have seen in Figure 3, the implied-volatility
from swaptions with option maturity of 3-month is fairly smooth, and hence may be a
better proxy for instantaneous volatility than the rolling standard deviation used in the
present paper.47

(D) That this paper solves all mysteries about USV. The results in this paper clearly
indicate that there is a lot less unspanned volatility than is presumed in the specific affine

45There is an interesting parallel in fluid dynamics/climate modeling, where the complexity of the
problem (the presence of many degrees of freedom) often forces one to build low-dimensional factor
models to approximate the reality: Aubry et al (1993) provides an example (a problem in fluid modeling)
in which a low-dimensional representation of a more complicated model can capture 99.9995% of the
variance but cannot reproduce the correct dynamics, as discussed in Crommelin and Majda (2004).

46The effects of anticipated jumps can be different from unanticipated jumps; the jump intensity
may also depend on the general level of uncertainty.

47Because swaption volatilities are usually quoted as a relative (percentage) volatility based on Black’s
formula, one may have to convert them to an “absolute” volatility. Note that near-term option-implied
volatilities tend to be somewhat higher than the realized volatilities empirically, possibly due to a
volatility risk premium. This can be accommodated by adding a constant term to the right-hand side
of eq. (25).
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USV models of CDG (2002) and CDGJ (2004). That said, there is a relatively high-
frequency unspanned variation in bond option prices, as indicated by CDG (2002)’s
regression. This paper is silent about the sources of this variation: how much it has
to do with the complexity of high-frequency yield volatility dynamics (highlighted by
AB (2006)’s regression),48 how much is due to the limitation of low-dimensional term
structure models (like the 2-factor QG model), and whether there are special mechanisms
in option markets (special hedging demand, option market microstructure effects, etc.)
that would explain it.

5. Concluding remarks

Collin-Dufresne and Goldstein (2002)’s proposal of the unspanned stochastic volatility
for the bond market brought into sharp focus a long-standing difficulty in time-consistent
term structure modeling, namely the poor relative pricing between bonds and bond
options: attempts to use no-arbitrage term structure models to price bond options with
bond yields data have not reported much success in reproducing the behavior of the
market option prices.

The USV scenario leads to an interesting take on this issue: relative pricing fails
because it is meant to fail. (The bond market is incomplete; hence yields information is
not sufficient to determine bond option prices.) This answer is not complete, however,
as it opens up the following questions: How incomplete is the bond market? To what
extent should relative pricing fail?

To address these questions, in this paper I have introduced a distinction between
the “weak USV” and the “strong USV” scenarios, and reexamined existing empirical
evidence and also presented new evidence. I have argued that although some kind
of weak USV effect seems to be present, the evidence for a more fundamental USV
effect (strong USV) is lacking. I find that a 2-factor QG model that gives up the
requirement of the positive-definiteness of nominal interest rates (i.e., model with non-
positive-definite normalization) can capture the variation of bond option prices fairly
well, largely obviating the need for a special USV factor to explain their (non-high-
frequency) variation. I have also presented much poorer results from the model with
positive-definite normalization; they may help explain the poor relative pricing results
in some of the existing studies, and may have useful implications for the specification
(normalization) of affine and QG models in future studies.

The present paper is also of methodological interest. The existing literature has largely
assumed that conventional econometric techniques work well in term structure estima-
tion settings and that the global optimum of the criterion function (likelihood function)
tells all that one needs to know about the model. This paper has shown that even at
the level of the 2-factor model the empirical analysis can be quite complicated, and

48Inhomogeneities in volatility dynamics due to scheduled macro data releases might be important
for short-dated options but likely not for caps and swaptions with long maturities.
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it provides a concrete example in which the conventional estimation leads to mislead-
ing results. One can only guess how much more challenging the empirical analysis of
higher-dimensional models would be. I have proposed to address these problems from
the perspective of “ill-posed inverse problems” (introducing regularization conditions for
the estimation), but more progress on the implementation front is clearly desirable.
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